If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1000=20z^2
We move all terms to the left:
1000-(20z^2)=0
a = -20; b = 0; c = +1000;
Δ = b2-4ac
Δ = 02-4·(-20)·1000
Δ = 80000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{80000}=\sqrt{40000*2}=\sqrt{40000}*\sqrt{2}=200\sqrt{2}$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-200\sqrt{2}}{2*-20}=\frac{0-200\sqrt{2}}{-40} =-\frac{200\sqrt{2}}{-40} =-\frac{5\sqrt{2}}{-1} $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+200\sqrt{2}}{2*-20}=\frac{0+200\sqrt{2}}{-40} =\frac{200\sqrt{2}}{-40} =\frac{5\sqrt{2}}{-1} $
| (-3x+7)()=-9() | | 12+2r=r-2r | | 10(x+4)=5x+75 | | X-4=1+6x | | 7/8=x+4 | | -2x-6=-4x-6 | | 3(3-3x=2(x+3)-30 | | 7(2x+1)=8 | | 2x+3+5x+3x-13=180 | | -7(-7-2x)=91 | | y=|-10|-1 | | 4x−12=364x−12=36 | | (x+12)=(5x-44) | | 168=-6(2+5m) | | X-8a=15 | | 9m+5=131 | | 12-5y=11y+8 | | 4y+1=2y-11 | | x+104+5x=104 | | 12-5=11y+8 | | 4x+17=-13 | | 9u-54+54=-27+54 | | 7(c−12)=0 | | 11+3x=x-3 | | 4v+8+6v-5=33 | | 8+4x=-5x+71 | | 11/4r=10 | | 7c+1=28 | | 15+8x=35+10x | | 9x−74=52−2x | | 263=-5(8x+5)+4x | | -16x^2+355=0 |